Impact of Drought in Northeastern Algeria: Comparative Study of the SPI and SPEI Índices

Authors

DOI:

https://doi.org/10.24857/rgsa.v18n9-078

Keywords:

Drought Characteristics, Northeast Algeria, Pareto General Distribution, SPI-SPEI

Abstract

Purpose: The study aimed to evaluate drought trends in Annaba, Algeria, considering global warming and extreme weather, using quantitative indices for improved drought comprehension and prediction.

 

Theoretical Framework:The study assesses changes in drought frequency and severity in the Annaba region of Algeria due to global warming and extreme weather conditions. It employs quantitative indices to enhance drought understanding and prediction.

 

Methodology: The study analyzes temperature and precipitation data (1981-2021) from an Annaba weather station to assess drought characteristics.Standardized indices (SPI, SPEI) and extreme value analysis (Generalized Pareto Distribution) are used to quantify drought intensity, duration, and temperature impacts.

 

Findings: Our analyses reveal a critical divergence in drought assessment tools. While stable monthly temperatures suggest a constant influence on evapotranspiration, the SPEI index (including temperature) indicates increasing drought compared to the precipitation-only SPI. This highlights the importance of considering temperature alongside precipitation for accurate drought assessment.

 

Research Practical and Social Implication: This study emphasizes the significance of considering the interplay among temperature, precipitation, and evapotranspiration for better understanding and predicting drought changes in the Annaba region, Algeria. These insights are crucial for sustainable water resource management and climate change adaptation in the region.

 

Originality/Value:This study distinguishes itself by its comprehensive analysis of long-term climate data to examine drought trends in a specific region (Annaba, Algeria) severely impacted by climate change. By comparing the effectiveness of two drought indices (SPEI and SPI), it offers valuable insights into how to improve drought assessments by considering the role of temperature in evapotranspiration. This research enriches the existing literature on drought management and climate change adaptation, providing a valuable case study for similar arid and semi-arid regions worldwide.

Downloads

Download data is not yet available.

References

Abdellaoui, M., & Wakker, P. P. (2005). The likelihood method for decision under uncertainty. Theoretical Decision, 58, 3-76. https://doi.org/10.1007/s11238-005-8320-4

Abramowitz, M., & Stegun, I. A. (1965). Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications.

Alley, W. M. (1984). The Palmer Drought Severity Index: Limitations and assumptions. Journal of Climate and Applied Meteorology, 23, 1100-1109.

Berhail, S., Tourki, M., Merrouche, I., & Bendekiche, H. (2021). Geo-statistical assessment of meteorological drought in the context of climate change: Case of the Macta basin (Northwest of Algeria). Modeling Earth Systems and Environment, 1-21.

Bentchakal, M., Medjerab, A., Chibane, B., & Rahmani, S. A. (2021). Meteorological drought and remote sensing data: An approach to assess fire risks in the Algerian forest. Modeling Earth Systems and Environment, 8, 3847-3858.

Yu, B., Zhang, X., Lin, H., & Yu, J.-Y. (2015). Comparison of wintertime North American climate impacts associated with multiple ENSO indices. Atmosphere-Ocean, 53(4), 426-445.

Bourque, A. (2000). Les changements climatiques et leurs impacts. Vertigo, 1(2), 1-27.

Denidina, B., Medjerab, A., & Mega, N. (2020). Characterization of drought events in south Oran and south Algiers steppes in Algeria. International Journal of Ecology and Development, 35(1). ISSN 0972-9984 (Print); ISSN 0973-7308.

Faye, C., Ndiaye, A., & Mbaye, I. (2017). A comparative assessment of sequences of drought weather indices, by scales and climate in Senegal areas. Journal of Water and Environmental Sciences, 1(1), 11-28

Freedman, D., Pisani, R., & Purves, R. (2007). Statistics (International Student Edition) (4th ed.). W. W. Norton & Company.

GIEC. (2022, April 4). Communiqué de presse du Groupe d’Experts Intergouvernemental sur l’évolution du climat. [Press release].

Gumbel, E. J. (1958). Statistics of extremes: Theory and applications. Columbia University Press.

Guttman, N. B. (1994). On the sensitivity of sample L moments to sample size. Journal of Climate, 7(5), 1026-1029.

Guttman, N. B. (1998). Comparing the Palmer drought index and the standardized precipitation index. Journal of the American Water Resources Association, 34(1), 113–121.

Guttman, N. B. (1999). Accepting the Standardized Precipitation Index: A calculation algorithm. Journal of the American Water Resources Association, 35(2), 311-322.

Hayes, M. J., Svoboda, M. D., Wilhite, D. A., & Vanyarkho, O. V. (1999). Monitoring the 1996 drought using the Standardized Precipitation Index. Bulletin of the American Meteorological Society, 80, 429-438.

IPCC. (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change [Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M. (Eds.)]. Cambridge University Press.

Kadi, D. (1995). Contribution à l'étude de la sécheresse sur le littoral algérien par le biais de traitement des données pluviométriques et la simulation [Contribution to the study of drought on the Algerian coast through the processing of rainfall data and simulation] (Thèse de Magister) [Master's thesis]. Ecole Nationale Polytechnique d’Alger

Kamel Mostafa-Kara. (2013). État des lieux, bilan et perspectives du défi du changement climatique en Algérie. Éditions Dahlab. ISBN: 9961-61-284-2.

Kendall, M. G. (1975). Rank correlation methods. Oxford University Press.

Khoualdia, W., Djebbar, Y., & Hammar, Y. (2014). Characterization of climate variability: The case of watershed Medjerda (North East of Algeria). Revue des Sciences et Technologie, Synthèse, 29, 6-23.

Köppen, W., & Geiger, R. (1936). Handbuch der Klimatologie. Gebrüder Borntraeger.

Kouame, Y. M., Soro, G. E., Kouakou, K. E., Kouadio, Z. A., Meledje, N. E. H., Gouala Bi, T. A., & Issiaka, S. (2014). Scénarios des changements climatiques pour les précipitations et les températures en Afrique subsaharienne tropicale humide: Cas du Bassin Versant de DAVO, Côte d’Ivoire. Larhyss Journal, (18), 197-213. ISSN 1112-3680.

Kundzewicz, Z. W., & Robson, A. (2000). Detecting trends and other changes in hydrological data. World Meteorological Organization, Geneva. 157 pp.

Lloyd-Hughes, B., & Saunders, M. A. (2002). A drought climatology for Europe. International Journal of Climatology.

Mann, H. B. (1945). Non-parametric tests against trend. Econometrica, 13, 245–259.

McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (pp. 179-184). Boston, MA, USA, January 17–22.

Meddi, M., & Humbert, J. (2000). Variabilité pluviométrique dans l'Ouest Algérien durant les cinq dernières décennies. Publication de l'Association Internationale de Climatologie, 13.

Nagode, M., Oman, S., Klemenc, J., & Panić, B. (2023). Gumbel mixture modelling for multiple failure data. Reliability Engineering & System Safety, 230(C). https://doi.org/10.1016/j.ress.2022.108946

NASA Science. (2023). Data resources. Earth Science Communications Team at NASA's Jet Propulsion Laboratory, California Institute of Technology. Retrieved from https://climate.nasa.gov/nasa_science/data/

Palmer, W. C. (1965). Meteorological drought. Research Paper No. 45. U.S. Weather Bureau.

Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, 4(2), 439-473.

Pita, L. M. F. (2001). Un nouvel indice de sécheresse pour les domaines méditerranéens: application au bassin du Guadalquivir (sud-ouest de l’Espagne). In 13e colloque de l’Association internationale de climatologie, Nice, France, September 6–9, 2000 (pp. 225–233).

Potop, V., Boroneanţ, C., Možný, M., Štěpánek, P., & Skalák, P. (2014). Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic. Theoretical and Applied Climatology, 115(3-4), 563–581.

Thornthwaite, C. W. (1948). An Approach toward a Rational Classification of Climate. Geographical Review, 38(1), 55-94.

Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23(7), 1696–1718.

Watson, R. T., Zinyowera, M. C., & Moss, R. H. (1998). The regional impacts of climate change: An assessment of vulnerability. University Press.

World Meteorological Organization. (2013). Statement on the status of the global climate in 2012 (No. 1108). ISBN 978-92-63-11108-1.

Wu, D., Xie, X., Tong, J., Meng, S., & Wang, Y. (2020). Sensitivity of vegetation growth to precipitation in a typical afforestation area in the Loess Plateau: Plant-water coupled modeling. Ecological Modelling, 430, 109128. https://doi.org/10.1016/j.ecolmodel.2020.109128

Xing, D., Wang, S., & Li, J. (2015). Effect of artificial weathering on the properties of industrial-scale thermally modified wood. BioResources, 10(4), 8238-8252.

Downloads

Published

2024-05-03

How to Cite

Ziari, A., & Medjerab, A. (2024). Impact of Drought in Northeastern Algeria: Comparative Study of the SPI and SPEI Índices. Revista De Gestão Social E Ambiental, 18(9), e06591. https://doi.org/10.24857/rgsa.v18n9-078

Issue

Section

Artigos