Germination and Initial Development of Calendula Officinallis as a Function of Seed Treatment with Promoter Bacteria




Medicinal Plant, Bacillus Subtilis, Azospirillum Brasilense, Pseudomonas Fluorescens


Objective: The study aims to evaluate the agronomic efficiency of different dosages and modes of application of inoculants based on Bacillus subtilis, Azospirillum brasilense, and Pseudomonas fluorescens in marigold plants, focusing on seed germination aspects and initial plant development.


Method: The research was conducted in two stages, including seed germination tests in the laboratory and evaluation of plant development in the field. Treatments were applied at different dosages and modes of application, with appropriate experimental design and statistical analysis of the data.


Research results and discussions: The results demonstrate that inoculation with growth-promoting microorganisms positively influenced the shoot length, root length, number of flowers, and fresh flower mass of marigold plants. Application of Bacillus subtilis yielded the best results in various variables, while the combination of seed treatment and foliar application provided the best results in fresh and dry root mass. The interaction between growth promoters and application modes also influenced the chlorophyll content of the plant leaves.


Research implications: The results indicate that inoculation with the studied microorganisms may be a viable alternative to enhance the agronomic performance of marigold, providing benefits such as increased fresh flower mass, flower quantity, and root length. This suggests the potential of these microorganisms as biological agents for plant growth promotion.


Originality/Value: This study contributes to the understanding of the agronomic effectiveness of different growth-promoting microorganisms in marigold plants, highlighting the importance of bacterial inoculation in plant development and providing insights for more sustainable agricultural practices.


Download data is not yet available.


Abdul-Baki, A.A. & Anderson, J.D. (1973). Vigor determination in soybean seed by multiple criteria. Crop Science, 13(6), 630-633.

Ashwlayan, V.D., Kumar, A., Verma, M., Garg, V.K. & Gupta, S.K. (2018). Therapeutic potential of Calendula officinalis. Pharmacy & Pharmacology International Journal, 6(1), 149-155.

Ayaz, M., Ali, Q., Farzand, A., Khan, A.R., Ling, H. & Gao, X. (2021). Nematicidal volatiles from Bacillus atrophaeus GBSC56 promote growth and stimulate induced systemic resistance in tomato against Meloidogyne incognita. International Journal of Molecular Sciences, 9(22), 1-19.

Batabyal, B. (2021). Azospirillum: diversity, distribution, and biotechnology applications. International Journal of Pharmacy & Life Sciences,12(1), 17-25.

Blake, C., Christensen, M.N. & Kovács, A.T. (2020). Molecular aspects of plant growth promotion and rotection by Bacillus subtilis. Molecular Plant-Microbe Interactions, 34(1), 15-25.

Brasil. Ministério da Agricultura, Pecuária e Abastecimento (2000). Regras para Análise de Sementes. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Brasília.

Cardoso, E.J.B.N. & Estrada-Bonilla, G.A. (2019). Inoculantes agrícolas. In: Lima, U.A. (org.). Biotecnologia Industrial: processos fermentativos e enzimáticos. São Paulo: Blucher.

David, B.V., Chandrasehar, G. & Selvam, P.N. (2018). Pseudomonas fluorescens: a plant-growth-promoting rhizobacterium (pgpr) with potential role in biocontrol of pests of crops. In: Prasad, R., Gill, S.S. & Tuteja, N.(eds.). New and Future Developments in Microbial Biotechnology and Bioengineering: crop improvement through microbial biotechnology. Amsterdam: Elsevier.

Dennis, C. & Webster J. (1971). Antagonistic properties of species-groups of Trichoderma. II. Production of non-volatile antibiotic. Transactions British Mycological Society, 57(1), 41-48.

Ferreira, D.F. (2014). Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38(2), 109-112.

Filipini, L.D., Pilatti, F.K., Meyer, E., Ventura, B.S., Lourenzi, C.R. & Lovato, P.E. (2020). Application of Azospirillum on seeds and leaves, associated with Rhizobium inoculation, increases growth and yield of common bean. Archives of Microbiology, 203(21), 1033-1038.

Freire, A. L. O., de França, G. M., Ferreira, D. R. dos S., Freire, A. L. de O., Ferreira, C. D., & Arriel, E. F. (2023). Growth, dry mass and organics solutes accumulation in Cnidoscollus phyllacanthus (M. Arg) Pax & Hoffm.) Seedlings Under Salinity. Revista de Gestão Social e Ambiental, 17(10), e04156.

Gao, S. & Chu, C. (2020). Gibberellin metabolism and signaling: targets for improving agronomic performance of crops. Plant Cell Physiology, 61(11), 1902-1911.

Kang, S.M., Hamayun, M., Khan, M.A., Iqbal, A. & Lee, I.J. (2019). Bacillus subtilis JW1 enhances plant growth and nutrient uptake of Chinese cabbage through gibberellins secretion. Journal of Applied Botany and Food Quality, 92(2), 172-178.

Kieber, J.J. & Schaller, G.E. (2018). Cytokinin signaling in plant development. The Company of Biologists, 145(4), 1-7.

Köppen, W. & Geiger, R. (2021). Classificação climática de Köppen-Geiger. Climate-Date.Org. 2021. Disponivel em: 4078/. Acesso em:09 jun. 2021.

Kovács, A.T. (2019). Bacillus subtilis. Trends in Microbiology, 27(6), 724-725.

Lemos, E.F., Rodriguez, A.P.R.M. & Alves, T.L. (2020). Doses e modo de aplicação de inoculante com Azospirillum brasilense na cultura do milho. Revista Ciência Et Praxis, 13(26), 83-94.

Mahapatra, S., Yadav, R. & Ramakrishna, W. (2022). Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. Journal of Applied Microbiology, 132, 3543-3562.

Mishra, B.S., Sharma, M. & Laxmi, A. (2021). Role of sugar and auxin crosstalk in plant growth and development. Physiologia Plantarum, 174(1), 1-21.

Nepali, B., Bhattarai, S. & Shrestha, J. (2018). Identification of Pseudomonas fluorescens using different biochemical tests. International Journal of Applied Biology, 2, 27-32.

Pereira, L.C., Piana, S.C., Braccini, A.L., Garcia, M.M., Ferri, G.C., Felber, P.H., Martelli, D.C.V., Bianchessi, P.A. & Dametto, I.B. (2017). Rendimento do trigo (Triticum aestivum) em resposta a diferentes modos de inoculação com Azospirillum brasilense. Revista de Ciências Agrárias, 40(1), 105-113.

Santos, M.S., Nogueira, M.A. & Hungria, M. (2021). Outstanding impact of Azospirillum brasilense strains Ab-V5 and Ab-V6 on the Brazilian agriculture: lessons that farmers are receptive to adopt new microbial inoculants. Revista Brasileira de Ciência do Solo, 45(1), 1-31.

Silva Júnior, A.A. (2006). Essentia herba: plantas bioativas. Florianópolis: Epagri.

Tao, S., Wu, Z., Wei, M., Liu, X., He, Y. & Ye, B.C. (2019). Bacillus subtilis SL-13 biochar formulation promotes pepper plant growth and soil improvement. Canadian Journal of Microbiology, 65(1), 1-35.

Tarrand, J.J., Kriec, N.R. & Dobereine, J. (1978). A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. Canadian Journal of Microbiology, 24, 967-980.

Teiten, M.H., Gaascht, F., Dicato, M. & Diederich, M. (2013). Anticancer bioactivity of compounds from medicinal plants used in European medieval traditions. Biochemical Pharmacology, 86, 1239-1247.

Vaz, A.P.A. & Jorge, M.H.A. (2006). Série Plantas Medicinais, Condimentares e Aromáticas: calêndula. Corumbá: Embrapa Pantanal.

Zanatta, T. P., Rizzi, M., & Schorr, L. P. B. (2022). Avalição de ativador da microbiota dos solos sobre o desempenho agronômico e produtividade da soja. Revista de Gestão Social e Ambiental, 16(3), e03051.




How to Cite

Cruz, F. P. B. da, Carvalho, M. A. C. de, Silva, I. V. da, Pessoa, M. J. G., & Yamashita, O. M. (2024). Germination and Initial Development of Calendula Officinallis as a Function of Seed Treatment with Promoter Bacteria. Revista De Gestão Social E Ambiental, 18(9), e06451.