Egyptian Ecosystem's Impacts on Climate Change: A Case Study of Some Agricultural Indicators

Authors

DOI:

https://doi.org/10.24857/rgsa.v18n8-051

Keywords:

CO2 Emissions, Ecosystem, Climate Change, Agriculture Indicators, Cointegration Analysis, Egypt

Abstract

Objective: the current study aims to empirically examine the dynamic impacts of ecosystem, with a particular focus on some agricultural indicators such as agricultural value added, crop production index, and livestock production index on CO2 emissions using annual time series data from 1990 to 2021. In order to enhance agricultural practices and develop successful sustainable agriculture policies in Egypt's agriculture sector.

 

Method: A literature review involving numerous studies has revealed that agriculture is a significant contributor to the emission of CO2 into the atmosphere, hence exacerbating the phenomenon of global warming. These studies utilized many methodologies, including ARDL, DOLS, FMOLS, CCR, and Johansen, to accomplish their objectives. These methodologies were applied to annual data from multiple countries. Therefore, this study used Johansen's cointegration test to fulfill their objectives.

 

Results and Discussion: The findings indicate that a 1% rise in agriculture value added and crop production index is found to be associated with a long-run decrease in carbon dioxide emissions of around 0.48% and 0.78%, respectively. A bidirectional causal relationship existed between carbon dioxide emissions and livestock production. Additionally, livestock production has a causal effect on crop production and conversely, crop production influences livestock production.

 

Research Implications: Enhancing agricultural productivity and environmental sustainability can be achieved by adopting climate-smart practices in the agriculture sector, at both local and global levels.

 

Originality/Value: This research study makes a valuable contribution to the existing body of literature by examining the significant and causal connections between environmental degradation and agriculture in the long term. This research demonstrates its significance and worth through its potential to aid policymakers in Egypt and other developing countries in formulating and executing efficient policies designed to address environmental degradation.

Downloads

Download data is not yet available.

References

Ali, B., Ullah, A., & Khan, D. (2021). Does the prevailing Indian agricultural ecosystem cause carbon dioxide emission? A consent towards risk reduction. Environmental Science and Pollution Research, 28(4), 4691–4703. https://doi.org/10.1007/s11356-020-10848-3 DOI: https://doi.org/10.1007/s11356-020-10848-3

Appiah, K., Du, J., & Poku, J. (2018). Causal relationship between agricultural production and carbon dioxide emissions in selected emerging economies. Environmental Science and Pollution Research, 25(25), 24764–24777. https://doi.org/10.1007/s11356-018-2523-z DOI: https://doi.org/10.1007/s11356-018-2523-z

Asumadu-Sarkodie, S., & Owusu, P. A. (2017). The causal nexus between carbon dioxide emissions and agricultural ecosystem—An econometric approach. Environmental Science and Pollution Research, 24(2), 1608–1618. https://doi.org/10.1007/s11356-016-7908-2 DOI: https://doi.org/10.1007/s11356-016-7908-2

Asumadu-Sarkodie, S., & Owusu, P. A. (2016a-07-01). Carbon dioxide emissions, GDP, energy use, and population growth: A multivariate and causality analysis for Ghana, 1971–2013. Environmental Science and Pollution Research, 23(13), 13508–13520. https://doi.org/10.1007/s11356-016-6511-x DOI: https://doi.org/10.1007/s11356-016-6511-x

Ayyildiz, M., & Erdal, G. (2021). The relationship between carbon dioxide emission and crop and livestock production indexes: A dynamic common correlated effects approach. Environmental Science and Pollution Research, 28(1), 597–610. https://doi.org/10.1007/s11356-020-10409-8 DOI: https://doi.org/10.1007/s11356-020-10409-8

Begum, R. A., Sohag, K., Abdullah, S. M. S., & Jaafar, M. (2015). CO2 emissions, energy consumption, economic and population growth in Malaysia. Renewable and Sustainable Energy Reviews, 41, 594–601. https://doi.org/10.1016/j.rser.2014.07.205 DOI: https://doi.org/10.1016/j.rser.2014.07.205

Bhatia, A., Jain, N., & Pathak, H. (2013). Methane and nitrous oxide emissions from Indian rice paddies, agricultural soils and crop residue burning. Greenhouse Gases: Science and Technology, 3(3), 196–211. https://doi.org/10.1002/ghg.1339 DOI: https://doi.org/10.1002/ghg.1339

Clark, M. A., Domingo, N. G. G., Colgan, K., Thakrar, S. K., Tilman, D., Lynch, J., Azevedo, I. L., & Hill, J. D. (2020). Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. Science (New York, N.Y.), 370(6517), 705–708. https://doi.org/10.1126/science.aba7357 DOI: https://doi.org/10.1126/science.aba7357

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series With a Unit Root. Journal of the American Statistical Association, 74(366), 427–431. https://doi.org/10.2307/2286348 DOI: https://doi.org/10.1080/01621459.1979.10482531

Duarte, R., Agung Banyu Perwita, A., Mahroza, J., Juni Risma Saragih, H., & Praditya, E. (2024). Strengthening ASEAN Food Security in Facing the Threat of Crisis in The Era of Globalization | Revista de Gestão Social e Ambiental. Revista De Gestão Social E Ambiental, 18(5), 1–19. https://doi.org/10.24857/rgsa.v18n5-013 DOI: https://doi.org/10.24857/rgsa.v18n5-013

El-khalifa, Z. S., & Zahran, H. (2022). Forecasting of Cultivated Area in Egyptian Lands Using a Time Series Model for Sustainable Development. Open Journal of Applied Sciences, 12, 865–876. https://doi.org/10.4236/ojapps.2022.126059 DOI: https://doi.org/10.4236/ojapps.2022.126059

El-Khalifa, Z. S., Zahran, H. F., & Ayoub, A. (2022). Climate Change Factors’ Impact on the Egyptian Agricultural Sector. Asian Journal of Agriculture and Rural Development, 12(3), Article 3. https://doi.org/10.55493/5005.v12i3.4600 DOI: https://doi.org/10.55493/5005.v12i3.4600

Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), 987–1007. https://doi.org/10.2307/1912773 DOI: https://doi.org/10.2307/1912773

Engle, R. F., & Granger, C. W. J. (1987). Co-Integration and Error Correction: Representation, Estimation, and Testing. Econometrica, 55(2), 251–276. https://doi.org/10.2307/1913236 DOI: https://doi.org/10.2307/1913236

FAOSTAT. (2020). Food and agriculture data. https://www.fao.org/faostat/en/#data

Godfrey, L. G. (1978). Testing for Higher Order Serial Correlation in Regression Equations when the Regressors Include Lagged Dependent Variables. Econometrica, 46(6), 1303–1310. https://doi.org/10.2307/1913830 DOI: https://doi.org/10.2307/1913830

Gütschow, J., Jeffery, M. L., Schaeffer, M., & Hare, B. (2018). Extending Near-Term Emissions Scenarios to Assess Warming Implications of Paris Agreement NDCs. Earth’s Future, 6(9), 1242–1259. https://doi.org/10.1002/2017EF000781 DOI: https://doi.org/10.1002/2017EF000781

Hongdou, L., Shiping, L., & Hao, L. (2018). Existing agricultural ecosystem in China leads to environmental pollution: An econometric approach. Environmental Science and Pollution Research, 25(24), 24488–24499. https://doi.org/10.1007/s11356-018-2461-9 DOI: https://doi.org/10.1007/s11356-018-2461-9

IPCC. (2014). AR5 Climate Change 2014: Impacts, Adaptation, and Vulnerability—IPCC. Part A: Global and Sectoral Aspects. In Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1st Ed.; Field, C.B., Barros, V.R., Eds.; Cambridge University Press: New York, NY, USA. https://www.ipcc.ch/report/ar5/wg2/

Jarque, C. M., & Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters, 6(3), 255–259. https://econpapers.repec.org/article/eeeecolet/v_3a6_3ay_3a1980_3ai_3a3_3ap_3a255-259.htm DOI: https://doi.org/10.1016/0165-1765(80)90024-5

Johansen, S. (1991). Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models. Econometrica, 59(6), 1551–1580. https://doi.org/10.2307/2938278 DOI: https://doi.org/10.2307/2938278

Johansen, S., & Juselius, K. (1990). Maximum Likelihood Estimation and Inference on Cointegration—With Applications to the Demand for Money. Oxford Bulletin of Economics and Statistics, 52(2), 169–210. https://doi.org/10.1111/j.1468-0084.1990.mp52002003.x DOI: https://doi.org/10.1111/j.1468-0084.1990.mp52002003.x

Kočenda, E., & Černý, A. (2016). Elements of Time Series Econometrics: An Applied Approach (third edition). Charles University in Prague, Karolinum Press. https://karolinum.cz/en/books/kocenda-elements-of-time-series-econometrics-an-applied-approach-15811 DOI: https://doi.org/10.2307/jj.362404

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1), 159–178. https://doi.org/10.1016/0304-4076(92)90104-Y DOI: https://doi.org/10.1016/0304-4076(92)90104-Y

MPED. (2021). Egyptian Ministry of Planning and Economic Development. https://mped.gov.eg

Naseem, S., Guang Ji, T., & Kashif, U. (2020a). Asymmetrical ARDL correlation between fossil fuel energy, food security, and carbon emission: Providing fresh information from Pakistan. Environmental Science and Pollution Research, 27(25), 31369–31382. https://doi.org/10.1007/s11356-020-09346-3 DOI: https://doi.org/10.1007/s11356-020-09346-3

Naseem, S., Guang Ji, T., & Kashif, U. (2020b). Asymmetrical ARDL correlation between fossil fuel energy, food security, and carbon emission: Providing fresh information from Pakistan. Environmental Science and Pollution Research, 27(25), 31369–31382. https://doi.org/10.1007/s11356-020-09346-3 DOI: https://doi.org/10.1007/s11356-020-09346-3

Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N. K., Edenhofer, O., Elgizouli, I., Field, C. B., Forster, P., Friedlingstein, P., Fuglestvedt, J., Gomez-Echeverri, L., Hallegatte, S., … van Ypserle, J.-P. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In R. K. Pachauri & L. Meyer (Eds.), EPIC3Geneva, Switzerland, IPCC, 151 p., pp. 151, ISBN: 978-92-9169-143-2 (p. 151). IPCC. https://epic.awi.de/id/eprint/37530/

Perron, P. (1988). Trends and random walks in macroeconomic time series: Further evidence from a new approach. Journal of Economic Dynamics and Control, 12(2), 297–332. https://doi.org/10.1016/0165-1889(88)90043-7 DOI: https://doi.org/10.1016/0165-1889(88)90043-7

Raihan, A. (2023a-03-01). The dynamic nexus between economic growth, renewable energy use, urbanization, industrialization, tourism, agricultural productivity, forest area, and carbon dioxide emissions in the Philippines. Energy Nexus, 9, 100180. https://doi.org/10.1016/j.nexus.2023.100180 DOI: https://doi.org/10.1016/j.nexus.2023.100180

Raihan, A. (2023b-06-01). Toward sustainable and green development in Chile: Dynamic influences of carbon emission reduction variables. Innovation and Green Development, 2(2), 100038. https://doi.org/10.1016/j.igd.2023.100038 DOI: https://doi.org/10.1016/j.igd.2023.100038

Raihan, A., Begum, R. A., Nizam, M., Said, M., & Pereira, J. J. (2022a-09-01). Dynamic impacts of energy use, agricultural land expansion, and deforestation on CO2 emissions in Malaysia. Environmental and Ecological Statistics, 29(3), 477–507. https://doi.org/10.1007/s10651-022-00532-9 DOI: https://doi.org/10.1007/s10651-022-00532-9

Raihan, A., Ibrahim, S., & Muhtasim, D. A. (2023a-06-01). Dynamic impacts of economic growth, energy use, tourism, and agricultural productivity on carbon dioxide emissions in Egypt. World Development Sustainability, 2, 100059. https://doi.org/10.1016/j.wds.2023.100059 DOI: https://doi.org/10.1016/j.wds.2023.100059

Raihan, A., Muhtasim, D. A., Farhana, S., Hasan, M. A. U., Pavel, M. I., Faruk, O., Rahman, M., & Mahmood, A. (2023b-03-01). An econometric analysis of Greenhouse gas emissions from different agricultural factors in Bangladesh. Energy Nexus, 9, 100179. https://doi.org/10.1016/j.nexus.2023.100179 DOI: https://doi.org/10.1016/j.nexus.2023.100179

Raihan, A., Muhtasim, D. A., Khan, M. N. A., Pavel, M. I., & Faruk, O. (2022c-12-01). Nexus between carbon emissions, economic growth, renewable energy use, and technological innovation towards achieving environmental sustainability in Bangladesh. Cleaner Energy Systems, 3, 100032. https://doi.org/10.1016/j.cles.2022.100032 DOI: https://doi.org/10.1016/j.cles.2022.100032

Raihan, A., Muhtasim, D. A., Pavel, M. I., Faruk, O., & Rahman, M. (2022b-12-01). An econometric analysis of the potential emission reduction components in Indonesia. Cleaner Production Letters, 3, 100008. https://doi.org/10.1016/j.clpl.2022.100008 DOI: https://doi.org/10.1016/j.clpl.2022.100008

Raihan, A., & Tuspekova, A. (2022b-01-01). Dynamic impacts of economic growth, energy use, urbanization, agricultural productivity, and forested area on carbon emissions: New insights from Kazakhstan. World Development Sustainability, 1, 100019. https://doi.org/10.1016/j.wds.2022.100019 DOI: https://doi.org/10.1016/j.wds.2022.100019

Raihan, A., & Tuspekova, A. (2022a-06-16). The nexus between economic growth, renewable energy use, agricultural land expansion, and carbon emissions: New insights from Peru. Energy Nexus, 6, 100067. https://doi.org/10.1016/j.nexus.2022.100067 DOI: https://doi.org/10.1016/j.nexus.2022.100067

Rehman, A., Ma, H., Ahmad, M., Irfan, M., Traore, O., & Chandio, A. A. (2021). Towards environmental Sustainability: Devolving the influence of carbon dioxide emission to population growth, climate change, Forestry, livestock and crops production in Pakistan. Ecological Indicators, 125, 107460. https://doi.org/10.1016/j.ecolind.2021.107460 DOI: https://doi.org/10.1016/j.ecolind.2021.107460

Rehman, A., Ma, H., & Ozturk, I. (2020). Decoupling the climatic and carbon dioxide emission influence to maize crop production in Pakistan. Air Quality, Atmosphere & Health, 13(6), 695–707. https://doi.org/10.1007/s11869-020-00825-7 DOI: https://doi.org/10.1007/s11869-020-00825-7

Rehman, A., Ma, H., Ozturk, I., & Ahmad, M. I. (2022a-01-01). Examining the carbon emissions and climate impacts on main agricultural crops production and land use: Updated evidence from Pakistan. Environmental Science and Pollution Research, 29(1), 868–882. https://doi.org/10.1007/s11356-021-15481-2 DOI: https://doi.org/10.1007/s11356-021-15481-2

Rehman, A., Zhang, D., & Ozturk, I. (2019). The Causal Connection between CO2 Emissions and Agricultural Productivity in Pakistan: Empirical Evidence from an Autoregressive Distributed Lag Bounds Testing Approach. Applied Sciences, 9, 1–16. https://doi.org/10.3390/app9081692 DOI: https://doi.org/10.3390/app9081692

Reis, J. M., Ferreira, M. A., & Carvalho, H. L. M. de. (2024). Determinants of Asymmetric Costs In Soya Production. Revista de Gestão Social e Ambiental, 18(4), Article 4. https://doi.org/10.24857/rgsa.v18n4-004 DOI: https://doi.org/10.24857/rgsa.v18n4-004

Sapkota, T. B., Khanam, F., Mathivanan, G. P., Vetter, S., Hussain, Sk. G., Pilat, A.-L., Shahrin, S., Hossain, Md. K., Sarker, N. R., & Krupnik, T. J. (2021). Quantifying opportunities for greenhouse gas emissions mitigation using big data from smallholder crop and livestock farmers across Bangladesh. Science of The Total Environment, 786, 147344. https://doi.org/10.1016/j.scitotenv.2021.147344 DOI: https://doi.org/10.1016/j.scitotenv.2021.147344

Wan Mohd Jaafar, W. S., Abdul Maulud, K. N., Muhmad Kamarulzaman, A. M., Raihan, A., Md Sah, S., Ahmad, A., Saad, S. N. M., Mohd Azmi, A. T., Jusoh Syukri, N. K. A., & Razzaq Khan, W. (2020). The Influence of Deforestation on Land Surface Temperature—A Case Study of Perak and Kedah, Malaysia. Forests, 11(6), Article 6. https://doi.org/10.3390/f11060670 DOI: https://doi.org/10.3390/f11060670

Wang, L., Vo, X. V., Shahbaz, M., & Ak, A. (2020). Globalization and carbon emissions: Is there any role of agriculture value-added, financial development, and natural resource rent in the aftermath of COP21? Journal of Environmental Management, 268, 110712. https://doi.org/10.1016/j.jenvman.2020.110712 DOI: https://doi.org/10.1016/j.jenvman.2020.110712

Westfall, P. H. (2014). Kurtosis as Peakedness, 1905–2014. R.I.P. The American Statistician, 68(3), 191–195. https://doi.org/10.1080/00031305.2014.917055 DOI: https://doi.org/10.1080/00031305.2014.917055

Downloads

Published

2024-04-19

How to Cite

El-khalifa , Z. S., Zahran , H. F., Ayoub , A., & Alkhuly, M. G. (2024). Egyptian Ecosystem’s Impacts on Climate Change: A Case Study of Some Agricultural Indicators. Revista De Gestão Social E Ambiental, 18(8), e06275. https://doi.org/10.24857/rgsa.v18n8-051

Issue

Section

Artigos