Utilization of Sonic Bloom Technology Combination of Compost Tea and Surfactants to Increase Soybean Productivity (Glycine max (L.) Merrill)


  • Istirochah Pujiwati




Compost Tea, Growmore, Surfactant, Sonic Bloom, Soybean


Purpose: The study aimed to determine the effects of organic compost tea liquid fertilizer, inorganic fertilizer, and surfactant application on soybean growth and the yield of sonic bloom technology.


Method: The study was conducted in a greenhouse scheming factorial experiment with randomized block design (RBD).


Findings and Conclusion: Likewise, the results indicated that the use of organic compost tea liquid fertilizer with a concentration of 15% enhanced the plant length, the number of leaves, and the leaf area, which were insignificantly different from the inorganic fertilizer growmore combined with surfactants. The yields of productive branches of 100 seeds weight, fresh weight, dry weight, and Harvest Index showed that 15% compost tea with surfactant gave identical decent results to growmore fertilizers with surfactants. Moreover, there was an increase in soybean productivity by 216% in scheming 15% compost tea combined with surfactants.


Research implications: However, the result did not distinguish significantly from the use of liquid inorganic fertilizer grow more with recommended dose + surfactant increased by 219% from the potential production of soybean variety with Dega-1, which was 3.82 t/ha.


Download data is not yet available.


Appah, S., Jia, W., Ou, M., Wang, P., & Asante, E. A. (2020). Analysis of potential impaction and phytotoxicity of surfactant-plant surface interaction in pesticide application. Crop Protection, 127, 104961. DOI: https://doi.org/10.1016/j.cropro.2019.104961

Arancon, N. Q., Edwards, C. A., Dick, R., & Dick, L. (2007). Vermicompost tea production and plant growth impacts. Biocycle, 48(11), 51.

Arthur, G. D., Jäger, A. K., & Van Staden, J. (2001). The release of cytokinin-like compounds from Gingko biloba leaf material during composting. Environmental and Experimental Botany, 45(1), 55–61. https://doi.org/10.1016/S0098-8472(00)00080-0 DOI: https://doi.org/10.1016/S0098-8472(00)00080-0

Bhagat, M. S., Mungray, A. K., & Mungray, A. A. (2021). Effect of sound waves and inclination of membrane on the performance of the osmotic microbial fuel cell. Water-Energy Nexus, 4, 113–122. DOI: https://doi.org/10.1016/j.wen.2021.07.003

Brinton, W. F., & Tränkner, A. (1996). Investigations into liquid compost extracts ("teas") for the control of plant pathogenic fungi. J. Submit. Woods Agra, 1–12.

Cai, W., He, H., Zhu, S., & Wang, N. (2014). Biological effect of audible sound control on mung bean (Vigna radiate) sprout. BioMed Research International, 2014, 2–6. DOI: https://doi.org/10.1155/2014/931740

Castro, M. J., Ojeda, C., & Cirelli, A. F. (2014). Advances in surfactants for agrochemicals. Environmental Chemistry Letters, 12(1), 85–95. DOI: https://doi.org/10.1007/s10311-013-0432-4

Central Statistics Agency. (2020). Imports of soybeans by main country of origin.

Dearborn, Y. (2011). Compost tea. In San Francisco Department of Environment.

Diver, S. (2002). Notes on compost teas: A supplement to the ATTRA publication: Compost teas for plant disease control. In Appropriate Technology Transfer for Rural Areas (ATTRA), National Sustainable Agriculture Information Service, AR.(National Center for Appropriate Technology, Montana). Retrieved March (Vol. 5, p. 2012).

Doorne, Y. V. (2000). The effects of variable sound frequencies on plant growth and development. Canadian Journal of Botany, 51(10), 1851–1856. DOI: https://doi.org/10.1139/b73-237

El Sagan, M. A. M. (2015). Effect of some natural extracts on growth and productivity of cucumber under sandy soil conditions. Internat. J. Advan. Res, 9(3), 677–686.

Fauziah, F., Haq, M., & Karyudi, D. A. R. (2015). Pengaruh pupuk daun dan pestisida mentomil pada tanaman teh yang teserang hama:(2) pengaruh terhadap populasi dan intensitas serangan Empoasca flavescens. Jurnal Penelitian Teh Dan Kina, 18(2), 141–150.

Fernández, V., & Brown, P. H. (2013). From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients. Frontiers in Plant Science, 4, 289. DOI: https://doi.org/10.3389/fpls.2013.00289

Fika, N. U. (2022). Badan pangan nasional: Produksi kedelai hanya cukup buat 1 bulan, perlu impor 2,8 juta ton. Kompas.Com.

González-Hernández, A. I., Suárez-Fernández, M. B., Pérez-Sánchez, R., Gómez-Sánchez, M. Á., & Morales-Corts, M. R. (2022). Compost tea as a sustainable alternative to promote plant growth and resistance against Rhizoctonia solani in potato plants. Scientia Horticulturae, 300(10): 111090 DOI: https://doi.org/10.1016/j.scienta.2022.111090

Hasan, N., Suryani, E., & Hendrawan, R. (2015). Analysis of soybean production and demand to develop strategic policy of food self sufficiency a system dynamics framework. Procedia Computer Science, 72, 605 – 612. DOI: https://doi.org/10.1016/j.procs.2015.12.169

Hassanien, R. H. E., Tian-zhen, H., Yu-feng, L., & Bao-ming, L. (2014). Advances in effects on Sound Waves on Plants. Journal of Integrative Agriculture, 13(2), 335-348 DOI: https://doi.org/10.1016/S2095-3119(13)60492-X

Harsono, A., Harnowo, D., Ginting, E., & Elisabeth, D. A. A. (2021). Soybean in Indonesia: current status, challenges and opportunities to achieve self-sufficiency. In J. C. Jimenez-Lopez, & A. Clemente (Eds.), Legumes Research - Volume 1. IntechOpen. https://doi.org/10.5772/intechopen.101264. DOI: https://doi.org/10.5772/intechopen.101264

Hendrawan, Y., Anniza, K.N., Prasetyo, J., Damayanti, R., & Djoyowasito, G. (2020). Effect of plant sound wave technology to increase productivity of mustard greens (Brassica juncea L.). IOP Conf. Ser.: Earth Environ. Sci. 524 012012. DOI: https://doi.org/10.1088/1755-1315/524/1/012012

Hoitink, H. A. J., Stone, A. G., & Han, D. Y. (1997). Suppression of plant diseases by composts. HortScience, 32(2), 184–187. DOI: https://doi.org/10.21273/HORTSCI.32.2.184

Ilangumaran, G., & Smith, D. L. (2017). Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Frontiers in Plant Science, 8, 1768. DOI: https://doi.org/10.3389/fpls.2017.01768

Meng, Q., Zhou, Q., Zheng, S., & Gao, Y. (2012). Responses on photosynthesis and variable chlorophyll fluorescence of Fragaria ananassa under sound wave. Energy Procedia, 16, 346–352. DOI: https://doi.org/10.1016/j.egypro.2012.01.057

Ningrum, I & Irianto, Heru & Riptanti, Erlyna. (2018). Analysis of soybean production and import trends and its import factors in Indonesia. IOP Conference Series: Earth and Environmental Science. 142. 012059. 10.1088/1755-1315/142/1/012059. DOI: https://doi.org/10.1088/1755-1315/142/1/012059

Oosterhuis, D. (2009). Foliar fertilization: Mechanisms and magnitude of nutrient uptake. Proceedings of the Fluid Forum, 15–17.

Pujiwati, I., Guritno, B., Aini, N., & Sakti, S. P. (2018). Examining use of sonic bloom technology on the stomata opening of drought-stressed soybean. Biosciences Biotechnology Research Asia. DOI: https://doi.org/10.13005/bbra/2695

Rohmah, I. N. (2012). Pengaruh pemaparan suara anjing tanah (orong–orong) termanipulasi pada peak frequency (2, 9±0, 1) 103 hz terhadap pertumbuhan dan produktivitas tanaman kedelai (glycine max (l.) Merr). In Skripsi pada FMIPA Pendidikan Fisika Universitas Negeri Yogyakarta. Universitas Negeri Yogyakarta.

Rosana, D., Kadarisman, N., & Suryadarma, I. G. P. (2019). Sets best practice model: Growth optimization and productivity of organic food plants through Iasmuspec application. Jurnal Pendidikan IPA Indonesia, 8(2), 267–278. DOI: https://doi.org/10.15294/jpii.v8i2.19248

Sastro, Y. (2015). Compost tea: Teknis produksi dan penerapannya dalam mendukung kesuburan tanah dan tanaman (pp. 27–34).

Scheuerell, S. J. (2004). Compost tea production practices, microbial properties, and plant disease suppression. International Conference on Soil and Compost Eco-Biology, 10(4), 313–338.

Scheuerell, S., & Mahaffee, W. (2002). Compost tea: Principles and prospects for plant disease control. Compost Science & Utilization, 10(4), 313–338. DOI: https://doi.org/10.1080/1065657X.2002.10702095

Shaban, H., Fazeli-Nasab, B., Alahyari, H., Alizadeh, G., & Shahpesandi, S. (2015). An overview of the benefits of compost tea on plant and soil structure. Advances in Bioresearch, 6(1).

Shrestha, K., Walsh, K. B., & Midmore, D. J. (2012). Microbially enhanced compost extract: does it increase solubilisation of minerals and mineralisation of organic matter and thus improve plant nutrition? Journal of Bioremediation and Biodegradation, 3(5), 149. https://doi.org/10.4172/2155-6199.1000149 DOI: https://doi.org/10.4172/2155-6199.1000149

Susilo, B., & Fitriani, Y. F. (2020). Effect of sonic bloom frequency on the growth of red amaranth (Alternanthera amoena Voss). IOP Conference Series: Earth and Environmental Science, 524(1), 1–7. DOI: https://doi.org/10.1088/1755-1315/524/1/012020

Vail, D. C., Hernández, D. L., Velis, E., & Wills, A. (2020). Compost tea production methods affect soil nitrogen and microbial activity in a northern highbush blueberry system. Agroecology and Sustainable Food Systems, 44(10), 1370–1383. DOI: https://doi.org/10.1080/21683565.2020.1724583




How to Cite

Pujiwati, I. (2024). Utilization of Sonic Bloom Technology Combination of Compost Tea and Surfactants to Increase Soybean Productivity (Glycine max (L.) Merrill). Revista De Gestão Social E Ambiental, 18(9), e05051. https://doi.org/10.24857/rgsa.v18n9-020